α-Adrenergic Blockade Unmasks a Greater Compensatory Vasodilation in Hypoperfused Contracting Muscle
نویسندگان
چکیده
We previously demonstrated that acute hypoperfusion in exercising human muscle causes an immediate increase in vascular resistance that is followed by a partial restoration (less than 100% recovery) of flow. In the current study we examined the contribution of α-adrenergic vasoconstriction in the initial changes in vascular resistance at the onset of hypoperfusion as well as in the recovery of flow over time. Nine healthy male subjects (29 ± 2) performed rhythmic forearm exercise (20% of maximum) during hypoperfusion evoked by intra-arterial balloon inflation. Each trial included; baseline, exercise prior to inflation, exercise with inflation, and exercise after deflation (3 min each). Forearm blood flow (FBF; ultrasound), local (brachial artery), and systemic arterial pressure (MAP; Finometer) were measured. The trial was repeated during phentolamine infusion (α-adrenergic receptor blockade). Forearm vascular conductance (FVC; ml min(-1) 100 mmHg(-1)) and resistance (mmHg ml min(-1)) was calculated from BF (ml min(-1)) and local MAP (mmHg). Recovery of FBF and FVC (steady state inflation plus exercise value - nadir)/[steady state exercise (control) value - nadir] with phentolamine was enhanced compared with the respective control (no drug) trial (FBF = 97 ± 5% vs. 81 ± 6%, P < 0.05; FVC = 126 ± 9% vs. 91 ± 5%, P < 0.01). However, the absolute (0.05 ± 0.01 vs. 0.06 ± 0.01 mmHg ml min(-1); P = 0.17) and relative (35 ± 5% vs. 31 ± 2%; P = 0.41) increase in vascular resistance at the onset of balloon inflation was not different between the α-adrenergic receptor inhibition and control (no drug) trials. Therefore, our data indicate that α-adrenergic mediated vasoconstriction restricts compensatory vasodilation during forearm exercise with hypoperfusion, but is not responsible for the initial increase in vascular resistance at the onset of hypoperfusion.
منابع مشابه
Muscle blood flow, hypoxia, and hypoperfusion.
Blood flow increases to exercising skeletal muscle, and this increase is driven primarily by vasodilation in the contracting muscles. When oxygen delivery to the contracting muscles is altered by changes in arterial oxygen content, the magnitude of the vasodilator response to exercise changes. It is augmented during hypoxia and blunted during hyperoxia. Because the magnitude of the increased va...
متن کاملHIGHLIGHTED TOPIC Hypoxia Muscle blood flow, hypoxia, and hypoperfusion
Joyner MJ, Casey DP. Muscle blood flow, hypoxia, and hypoperfusion. J Appl Physiol 116: 852– 857, 2014. First published July 25, 2013; doi:10.1152/japplphysiol.00620.2013.—Blood flow increases to exercising skeletal muscle, and this increase is driven primarily by vasodilation in the contracting muscles. When oxygen delivery to the contracting muscles is altered by changes in arterial oxygen co...
متن کاملLocal control of skeletal muscle blood flow during exercise: influence of available oxygen.
Reductions in oxygen availability (O(2)) by either reduced arterial O(2) content or reduced perfusion pressure can have profound influences on the circulation, including vasodilation in skeletal muscle vascular beds. The purpose of this review is to put into context the present evidence regarding mechanisms responsible for the local control of blood flow during acute systemic hypoxia and/or loc...
متن کاملContribution of adenosine to compensatory dilation in hypoperfused contracting human muscles is independent of nitric oxide.
We previously demonstrated that nitric oxide (NO) contributes to compensatory vasodilation in the contracting human forearm subjected to acute hypoperfusion. We examined the potential role of an adenosine-NO interaction to this response in 17 male subjects (25 ± 2 yr). In separate protocols subjects performed rhythmic forearm exercise (20% of maximum) while hypoperfusion was evoked by balloon i...
متن کاملMuscle metaboreflex activation during dynamic exercise vasoconstricts ischemic active skeletal muscle.
Metabolite accumulation due to ischemia of active skeletal muscle stimulates group III/IV chemosensitive afferents eliciting reflex increases in arterial blood pressure and sympathetic activity, termed the muscle metaboreflex. We and others have previously demonstrated sympathetically mediated vasoconstriction of coronary, renal, and forelimb vasculatures with muscle metaboreflex activation (MM...
متن کامل